Removing Missing values in R-Quick Guide

Removing Missing values in R, To return values in R that are not NA values, use the following syntax.

Removing Missing values in R

Only values that aren’t NA are returned.

x <- x[!is.na(x)]

The examples below demonstrate how to utilize this syntax in R with both vectors and data frames.

Line types in R: Ultimate Guide For R Baseplot and ggplot » finnstats

Approach 1: Return Values in a Vector That Aren’t NA

The code below shows how to return non-NA values from a vector.

make a vector first,

x <- c(139, 254, 456,NA, 46, NA, 79,NA)

To return only values that are not NA

x <- x[!is.na(x)]
x
[1] 139 254 456  46  79

Approach 2: Return Rows that are Not NA in One Column of Data Frame

The code below explains how to get the rows in a data frame that don’t have a NA value in a certain column.

Feature Scaling in Machine Learning-Introduction » finnstats

create a data frame

df <- data.frame(team=c('Q1', 'Q2', 'Q3', 'Q4', 'Q5'),
                 kick=c(13, NA, 31, 32, 14),
                 pass=c(32, NA, NA, 34, 35))
df
  team kick pass
1   Q1   13   32
2   Q2   NA   NA
3   Q3   31   NA
4   Q4   32   34
5   Q5   14   35

Rows containing NA in the ‘pass’ column should be removed.

df <- df[!(is.na(df$pass)), ]
df

Now we can view the data frame

team kick pass
1   Q1   13   32
4   Q4   32   34
5   Q5   14   35

Approach 3: Return Rows that are Not NA in Several Columns

The code below explains how to return the rows in a data frame that do not have a NA value in one of the multiple columns.

Introduction to Deep Learning » finnstats

set up a data frame first,

df <- data.frame(team=c('Q1', 'Q2', 'Q3', 'Q4', 'Q5'),
                 kick=c(13, NA, 31, 32, 14),
                 pass=c(32, NA, NA, 34, 35))
df

view the data frame

   team kick pass
1   Q1   13   32
2   Q2   NA   NA
3   Q3   31   NA
4   Q4   32   34
5   Q5   14   35

Let’s remove rows with NA in the kick and pass column

df <- df[!(is.na(df$kick)) & !(is.na(df$pass)), ]

Yes, view the data frame

df
  team kick pass
1   Q1   13   32
4   Q4   32   34
5   Q5   14   35

Approach 4: Return Rows that are Not NA in Any Column

The following code returns the rows in a data frame that have no NA value in any column.

Transition plot in R-change in time visualization » finnstats

Start with data frame

df <- data.frame(team=c('Q1', NA, 'Q3', 'Q4', 'Q5'),
                 kick=c(13, NA, 31, 32, 14),
                 pass=c(32, NA, NA, 34, 35))
df
  team kick pass
1   Q1   13   32
2 <NA>   NA   NA
3   Q3   31   NA
4   Q4   32   34
5   Q5   14   35

Now remove rows with NA in any column

df <- na.omit(df)
df
  team kick pass
1   Q1   13   32
4   Q4   32   34
5   Q5   14   35

Have you found this article to be interesting? I’d be glad if you could forward it to a friend or share it on Twitter or Linked In to help it spread.

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

5 × five =

Ads Blocker Image Powered by Code Help Pro

Quality articles need supporters. Will you be one?

You currently have an Ad Blocker on.

Please support FINNSTATS.COM by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock