K Nearest Neighbor Algorithm in Machine Learning

K Nearest Neighbor Algorithm in Machine Learning, in this tutorial we are going to explain classification and regression problems.

Machine learning is a subset of artificial intelligence which provides machines the ability to learn automatically and improve from previous experience without being explicitly programmed.

The major part of machine learning is data. Feed the machine with data and make a model and predict. Feed with more data and the model becomes more accurate accordingly.

Naïve Bayes classification in R

K Nearest Neighbor Algorithm in Machine Learning

What is knn algorithm?

K Nearest Neighbour is a supervised learning algorithm that classifies a new data point into the target class, depending on the features of its neighboring data points.

Let’s look at the student dataset with GPA and GRE scores for classification problems and Boston housing data for a regression problem.

The euclidian distance is used for calculating the distance between k neighbors and some of the variables have different magnitudes, so standardization is important.

Some of the popular application examples are

  • Recommendation system
  • Loan Approval
  • Anamoly Detection
  • Text Categorization
  • Finance
  • Medicine

Let’s see how do we apply knn algorithm in classification and regression.

Market Basket Analysis in R

Classification Approach

Load Libraries

library(caret)
library(pROC)
library(mlbench)

Getting Data

data <- read.csv("D:/RStudio/knn/binary.csv", header = T)
str(data)

You can access the dataset from this link

'data.frame': 400 obs. of  4 variables:
 $ admit: int  0 1 1 1 0 1 1 0 1 0 ...
 $ gre  : int  380 660 800 640 520 760 560 400 540 700 ...
 $ gpa  : num  3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
 $ rank : int  3 3 1 4 4 2 1 2 3 2 ...

The data frame contains 400 observations and 4 variables and rank variables stored as integers currently need to convert into factor variables. Admit is the response variable or dependent variable let’s recode 0 and 1 into No and Yes.

data$admit[data$admit == 0] <- 'No'
data$admit[data$admit == 1] <- 'Yes'
data$admit <- factor(data$admit)

Data Partition

Let’s create independent samples and create training and test datasets for prediction.

set.seed(1234)
ind <- sample(2, nrow(data), replace = T, prob = c(0.7, 0.3))
training <- data[ind == 1,]
test <- data[ind == 2,]
str(training)
'data.frame': 284 obs. of  4 variables:
 $ admit: Factor w/ 2 levels "No","Yes": 1 2 2 2 2 2 1 2 1 1 ...
 $ gre  : int  380 660 800 640 760 560 400 540 700 800 ...
 $ gpa  : num  3.61 3.67 4 3.19 3 2.98 3.08 3.39 3.92 4 ...
 $ rank : int  3 3 1 4 2 1 2 3 2 4 ...

The training dataset contains now 284 observations with 4 variables and the test dataset contains 116 observations and 4 variables.

Cluster optimization in R

KNN Model

Before making knn model we need to create train control. Let’s create train control based on the below code.

trControl <- trainControl(method = "repeatedcv",
                          number = 10,
                          repeats = 3,
                          classProbs = TRUE,
                          summaryFunction = twoClassSummary)

trainControl is from caret package

number of iteration is 10 times.

Repeat the cross-validation is 3 times.

set.seed(222)
fit <- train(admit ~ .,
             data = training,
             method = 'knn',
             tuneLength = 20,
             trControl = trControl,
             preProc = c("center", "scale"),
             metric = "ROC",
             tuneGrid = expand.grid(k = 1:60))

Model Performance

fit

k-Nearest Neighbors

284 samples
  3 predictor
  2 classes: 'No', 'Yes'
Pre-processing: centered (3), scaled (3)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 256, 256, 256, 256, 255, 256, ...
Resampling results across tuning parameters:
  k   ROC   Sens  Spec
   1  0.54  0.71  0.370
   2  0.56  0.70  0.357
   3  0.58  0.80  0.341
   4  0.56  0.78  0.261
   5  0.59  0.81  0.285
   6  0.59  0.82  0.277
   7  0.59  0.86  0.283
   8  0.59  0.86  0.269
   9  0.60  0.87  0.291
  10  0.59  0.87  0.274
  11  0.60  0.88  0.286
  12  0.59  0.87  0.277
  13  0.59  0.87  0.242
  14  0.59  0.89  0.257
  15  0.60  0.88  0.228
  16  0.61  0.90  0.221
  17  0.63  0.90  0.236
  18  0.63  0.90  0.215
  19  0.63  0.90  0.229
  20  0.64  0.90  0.222
  21  0.64  0.91  0.211
  22  0.64  0.91  0.225
  23  0.64  0.92  0.214
  24  0.64  0.93  0.217
  25  0.65  0.92  0.200
  26  0.65  0.93  0.199
  27  0.66  0.93  0.203
  28  0.66  0.94  0.210
  29  0.67  0.94  0.199
  30  0.67  0.94  0.199
  .....................
 59  0.66  0.96  0.096
  60  0.67  0.96  0.100

ROC was used to select the optimal model using the largest value.

The final value used for the model was k = 30.

We have carried out 10 cross-validations and the best ROC we got at k=30

Decision Trees in R

plot(fit)
varImp(fit)

ROC curve variable importance

     Importance
gpa       100.0
rank       25.2
gre         0.0

gpa is more important followed by rank and gre is not important.

pred <- predict(fit, newdata = test)
confusionMatrix(pred, test$admit)

Confusion Matrix and Statistics

          Reference
Prediction No Yes
       No  79  29
       Yes  3   5
               Accuracy : 0.724         
                 95% CI : (0.633, 0.803)
    No Information Rate : 0.707        
    P-Value [Acc > NIR] : 0.385        
                  Kappa : 0.142        
 Mcnemar's Test P-Value : 9.9e-06      
            Sensitivity : 0.963        
            Specificity : 0.147        
         Pos Pred Value : 0.731        
         Neg Pred Value : 0.625        
             Prevalence : 0.707        
         Detection Rate : 0.681        
   Detection Prevalence : 0.931        
      Balanced Accuracy : 0.555        
       'Positive' Class : No     

Model accuracy is 72% with 84 correct classifications out of 116 classifications.

Regression analysis in R

Regression

Let’s look at the Bostonhousing data

data("BostonHousing")
data <- BostonHousing)
str(data)
'data.frame': 506 obs. of  14 variables:
 $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
 $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
 $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
 $ chas   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
 $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
 $ rm     : num  6.58 6.42 7.18 7 7.15 ...
 $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
 $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
 $ rad    : num  1 2 2 3 3 3 5 5 5 5 ...
 $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...
 $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
 $ b      : num  397 397 393 395 397 ...
 $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
 $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

Medv is the response or dependent variable with numeric values. The data frame contains a total of 506 observations and 14 variables.

Data Partition

Let’s do the data partition for prediction.

Timeseries analysis in R

set.seed(1234)
ind <- sample(2, nrow(data), replace = T, prob = c(0.7, 0.3))
training <- data[ind == 1,]
test <- data[ind == 2,]

KNN Model

trControl <- trainControl(method = 'repeatedcv', 
                          number = 10,   
                        repeats = 3) 
set.seed(333)

Let’s fit the regression model

fit <- train(medv ~.,
             data = training,
             tuneGrid = expand.grid(k=1:70),
             method = 'knn',
             metric = 'Rsquared',
             trControl = trControl,
             preProc = c('center', 'scale'))

Model Performance

fit

k-Nearest Neighbors

355 samples
 13 predictor
Pre-processing: centered (13), scaled (13)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 320, 320, 319, 320, 319, 319, ...
Resampling results across tuning parameters:
  k   RMSE  Rsquared  MAE
   1  4.2   0.78      2.8
   2  4.0   0.81      2.7
   3  4.0   0.82      2.6
   4  4.1   0.81      2.7
   ......................
  70  5.9   0.72      4.1

R-squared was used to select the optimal model using the largest value.

The final value used for the model was k = 3.

This model is based on 10 fold cross-validation with 3 repeats.

Self Organizing Maps

plot(fit) 
varImp(fit)

loess r-squared variable importance

        Overall
rm        100.0
lstat      98.0
indus      87.1
nox        82.3
tax        68.4
ptratio    50.8
rad        41.3
dis        41.2
zn         37.9
crim       34.5
b          24.2
age        22.4
chas        0.0

rm is the most important variable and followed by lstat, indus, nox etc..

pred <- predict(fit, newdata = test)
RMSE(pred, test$medv)
6.1
plot(pred ~ test$medv)

Conclusion

Based on the knn machine algorithm we can make insights for classification and regression problems.

Read Logistic Regression in R

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

five × 2 =