Decision Tree R Code

Decision Tree R Code, Decision trees are mainly classification and regression types.

Classification means Y variable is factor and regression type means Y variable is numeric.

Just look at one of the examples from each type,

Classification example is detecting email spam data and regression tree example is from Boston housing data.

Decision trees are also called Trees and CART.

CART indicates classification and regression trees.

The main goal behind the classification tree is to classify or predict an outcome based on a set of predictors.

Latest Data Science job vacancies

Advantageous of Decision Trees

Easy Interpretation

Making predictions is fast

Easy to identify important variables

Handless missing data

One of the drawbacks is to can have high variability in performance.

Recursive portioning- basis can achieve maximum homogeneity within the new partition.

Discriminant Analysis in R

Decision Tree R Code

Method 1:- Classification Tree

Load Library

library(DAAG)
library(party)
library(rpart)
library(rpart.plot)
library(mlbench)
library(caret)
library(pROC)
library(tree)

Getting Data -Email Spam Detection

str(spam7) 
data.frame':  4601 obs. of  7 variables:
 $ crl.tot: num  278 1028 2259 191 191 ...
 $ dollar : num  0 0.18 0.184 0 0 0 0.054 0 0.203 0.081 ...
 $ bang   : num  0.778 0.372 0.276 0.137 0.135 0 0.164 0 0.181 0.244 ...
 $ money  : num  0 0.43 0.06 0 0 0 0 0 0.15 0 ...
 $ n000   : num  0 0.43 1.16 0 0 0 0 0 0 0.19 ...
 $ make   : num  0 0.21 0.06 0 0 0 0 0 0.15 0.06 ...
 $ yesno  : Factor w/ 2 levels "n","y": 2 2 2 2 2 2 2 2 2 2 ...

Total 4601 observations and 7 variables.

Chi Square Distribution Examples

mydata <- spam7

Data Partition

set.seed(1234)
ind <- sample(2, nrow(mydata), replace = T, prob = c(0.5, 0.5))
train <- mydata[ind == 1,]
test <- mydata[ind == 2,]
Tree Classification
tree <- rpart(yesno ~., data = train)
rpart.plot(tree)
printcp(tree)
Classification tree:
rpart(formula = yesno ~ ., data = train)
Variables actually used in tree construction:
[1] bang    crl.tot dollar
Root node error: 900/2305 = 0.39046
n= 2305
        CP nsplit rel error  xerror     xstd
1 0.474444      0   1.00000 1.00000 0.026024
2 0.074444      1   0.52556 0.56556 0.022128
3 0.010000      3   0.37667 0.42111 0.019773
plotcp(tree)

You can change the cp value according to your data set. Please note lower cp value means the bigger the tree. If you are using too lower cp that leads to overfitting also.

tree <- rpart(yesno ~., data = train,cp=0.07444)

Confusion matrix -train

p <- predict(tree, train, type = 'class')
confusionMatrix(p, train$yesno, positive=’y’)

Please make sure you mention positive classes in the confusion matrix.

Random Forest Model in R

Confusion Matrix and Statistics
          Reference
Prediction    n    y
         n 1278  212
         y  127  688
               Accuracy : 0.8529         
                 95% CI : (0.8378, 0.8671)
    No Information Rate : 0.6095         
    P-Value [Acc > NIR] : < 2.2e-16      
                  Kappa : 0.6857         
 Mcnemar's Test P-Value : 5.061e-06      
           Sensitivity : 0.7644         
            Specificity : 0.9096         
         Pos Pred Value : 0.8442         
         Neg Pred Value : 0.8577         
             Prevalence : 0.3905         
         Detection Rate : 0.2985         
   Detection Prevalence : 0.3536         
      Balanced Accuracy : 0.8370         
       'Positive' Class : y
Model has 85% accuracy

ROC

p1 <- predict(tree, test, type = 'prob')
p1 <- p1[,2]
r <- multiclass.roc(test$yesno, p1, percent = TRUE)
roc <- r[['rocs']]
r1 <- roc[[1]]
plot.roc(r1,
         print.auc=TRUE,
         auc.polygon=TRUE,
         grid=c(0.1, 0.2),
         grid.col=c("green", "red"),
         max.auc.polygon=TRUE,
         auc.polygon.col="lightblue",
         print.thres=TRUE,
         main= 'ROC Curve')

Method 2- Regression  Tree

data('BostonHousing')
mydata <- BostonHousing

Market Basket Analysis in R

Data Partition

set.seed(1234)
ind <- sample(2, nrow(mydata), replace = T, prob = c(0.5, 0.5))
train <- mydata[ind == 1,]
test <- mydata[ind == 2,]
Regression tree
tree <- rpart(medv ~., data = train)
rpart.plot(tree)
printcp(tree)
Regression tree:
rpart(formula = medv ~ ., data = train)
Variables actually used in tree construction:
[1] age   crim  lstat rm  
Root node error: 22620/262 = 86.334
n= 262
        CP nsplit rel error  xerror     xstd
0.469231      0   1.00000 1.01139 0.115186
2 0.128700      1   0.53077 0.62346 0.080154
3 0.098630      2   0.40207 0.51042 0.076055
4 0.033799      3   0.30344 0.42674 0.069827
5 0.028885      4   0.26964 0.39232 0.066342
6 0.028018      5   0.24075 0.37848 0.066389
7 0.015141      6   0.21274 0.34877 0.065824
8 0.010000      7   0.19760 0.33707 0.065641
rpart.rules(tree)
medv                                                                       
13 when lstat >=        14.8 & crim >= 5.8   
17 when lstat >=        14.8 & crim <  5.8    
22 when lstat is 7.2 to 14.8 & rm <  6.6                                    
26 when lstat <  7.2         & rm <  6.8        & age <  89                 
29 when lstat is 7.2 to 14.8 & rm >=        6.6                             
33 when lstat <  7.2         & rm is 6.8 to 7.5 & age <  89                 
40 when lstat <  7.2         & rm <  7.5        & age >= 89                 
45 when lstat <  7.2         & rm >=        7.5       

Coefficient of Variation Example   

plotcp(tree)

Predict

p <- predict(tree, train)

Root Mean Square Error

sqrt(mean((train$medv-p)^2))

4.130294

R Square

(cor(train$medv,p))^2

0.8024039

Conclusion

In the regression model, the r square value is 80% and RMSE is 4.13, not bad at all..In this way, you can make use of Decision classification regression tree models.

Gradient Boosting in R

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

ten − one =