One proportion Z Test in R

One proportion Z Test in R, One proportion Z-Test is a statistical test that is used to determine whether the difference between observed and expected frequencies for a categorical variable is significant or due to chance.

It is a hypothesis-testing method that helps researchers make inferences about a population based on a sample. In this article, we will discuss how to perform a one-proportion Z-Test in R.

Formulation of the Hypothesis:

Before performing a one-proportion Z-Test, it is necessary to formulate the null and alternative hypotheses.

The null hypothesis (H0) assumes that there is no significant difference between the observed and expected frequencies for a categorical variable.

It is usually written as:

H0: p = p0

where p is the proportion of the sample with a particular characteristic and p0 is the hypothesized proportion.

The alternative hypothesis (H1) assumes that there is a significant difference between the observed and expected frequencies for a categorical variable. It can be either one-tailed or two-tailed and is usually written as:

H1: p ≠ p0 (two-tailed)
H1: p > p0 (one-tailed)
H1: p < p0 (one-tailed)

In the following sections, we will provide examples of how to perform a one-proportion Z-Test in R.

Example 1: One-Tailed Z-Test

In this example, we will use a dataset that contains information about 1000 people and whether or not they have a specific disease.

We want to test the hypothesis that the proportion of people with the disease is greater than 10% using a one-tailed Z-Test.

First, we need to load the dataset:

disease_data <- read.csv("disease_data.csv")

Next, we can calculate the proportion of people with the disease:

n_total <- nrow(disease_data)
n_disease <- sum(disease_data$disease == "Yes")
p_disease <- n_disease / n_total

Then, we can specify the null and alternative hypotheses:

p0 <- 0.1
H0 <- paste0("p =", p0)
H1 <- paste0("p >", p0)

We can now conduct the one-tailed Z-Test using the ‘prop.test’ function:

z_test <- prop.test(n_disease, n_total, p = p0, alternative = "greater")

Finally, we can extract the test statistic, critical value, and p-value from the Z-Test output using the ‘summary’ function:

summary(z_test)

The output will display the test statistic, the critical value, the p-value, and a conclusion based on the test results.

In this case, because the p-value is less than 0.05, we reject the null hypothesis and conclude that the proportion of people with the disease is significantly higher than 10%.

Applications of Data Science in Education » Data Science Tutorials

Example 2: Two-Tailed Z-Test

In this example, we will use a dataset that contains information about 1000 people and whether or not they have a specific gene variant.

We want to test the hypothesis that the proportion of people with the gene variant is not equal to 15% using a two-tailed Z-Test.

Let’s load the dataset:

gene_data <- read.csv("gene_data.csv")

Next, we can calculate the proportion of people with the gene variant:

n_total <- nrow(gene_data)
n_variant <- sum(gene_data$variant == "Yes")
p_variant <- n_variant / n_total

Then, we can specify the null and alternative hypotheses:

p0 <- 0.15
H0 <- paste0("p =", p0)
H1 <- paste0("p ≠", p0)

We can now conduct the two-tailed Z-Test using the ‘prop.test’ function:

z_test <- prop.test(n_variant, n_total, p = p0, alternative = "two.sided")

Finally, we can extract the test statistic, critical value, and p-value from the Z-Test output using the ‘summary’ function:

summary(z_test)

The output will display the test statistic, the critical value, the p-value, and a conclusion based on the test results.

In this case, because the p-value is greater than 0.05, we fail to reject the null hypothesis and conclude that there is no evidence of a significant difference between the observed and expected frequencies of the gene variant.

Example 3: Conducting Z-Test using Manual Calculation

In this example, we will provide a manual calculation for a one-tailed Z-Test. We will use the same dataset as Example 1.

First, we need to calculate the standard error of the proportion:

se <- sqrt(p_disease * (1 - p_disease) / n_total)

Next, we can calculate the test statistic:

z <- (p_disease - p0) / se

Finally, we can calculate the p-value using the ‘pnorm’ function:

p_value <- 1 - pnorm(z)

The p-value will be the same as the one calculated in Example 1.

Conclusion:

In this article, we have demonstrated how to perform a one proportion Z-Test in R using both the ‘prop.test’ function and manual calculation.

The one proportion Z-Test is a hypothesis testing method that helps researchers make inferences about a population based on a sample.

By utilizing the examples provided in this article, researchers can use the one proportion Z-Test to test hypotheses related to proportions in their datasets.

Data Management Analyst »

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

12 − 5 =

Ads Blocker Image Powered by Code Help Pro

Quality articles need supporters. Will you be one?

You currently have an Ad Blocker on.

Please support FINNSTATS.COM by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock