How to Calculate Cramer’s V in R

How to Calculate Cramer’s V in R, Cramer’s V is a statistic that ranges from 0 to 1 and is used to assess the strength of the relationship between two nominal variables.

Closer values near 0 suggest a weak relationship between the variables, while closer values to 1 indicate a strong relationship.

The following formula is used to calculate Cramer’s V statistic.

Cramer’s V = √(X2/n) / min(c-1, r-1)

where:

X2: The Chi-square statistic

n: Total sample size

r: Number of rows

c: Number of columns

How to Calculate Cramer’s V in R

This article shows how to calculate Cramer’s V for a contingency table in R using a couple of examples.

Approach 1: Cramer’s V for a 2×2 Table

The following code explains how to calculate Cramer’s V for a 22 table using the CramerV function from the rcompanion package.

Let’s create a 2×2 table matrix,

data = matrix(c(5,8,10,23), nrow = 2)

Now we can view the matrix

data
     [,1] [,2]
[1,]    5   10
[2,]    8   23

Load the rcompanion library in the R console.

library(rcompanion)

Now it’s ready to calculate Cramer’s V statistic

cramerV(data)
Cramer V
 0.07836

Cramer’s V is 0. 07836, indicating a rather weak relationship between the two variables in the table.

By using ci = TRUE, we can also generate a confidence interval for Cramer’s V:

cramerV(data, ci = TRUE)
  Cramer.V lower.ci upper.ci
1  0.07836 0.004985   0.3639

Cramer’s V stays constant at 0. 07836, but we now have a 95 percent confidence interval containing a range of values that is likely to reflect Cramer’s V’s true value.

[0.004985, 0.3639] turns out to be the interval.

Approach 2: Cramer’s V for Larger Tables

It’s worth noting that the CramerV function can be used to calculate Cramer’s V for any table size.

For a table with two rows and three columns, the following code explains how to calculate Cramer’s V.

Let’s create a 3×4 table

data<-matrix(c(3, 9, 14, 15, 12, 22,10,16,9,10,14,12), nrow = 3)

Let’s view the matrix

data
   [,1] [,2] [,3] [,4]
[1,]    3   15   10   10
[2,]    9   12   16   14
[3,]   14   22    9   12

Now we can calculate Cramer’s V

cramerV(data)
Cramer V
  0.1781

Cramer’s V turns out to be 0.1781, indicating a rather weak relationship between the two variables in the table, but better than approach 1.

cramerV(data, ci = TRUE)
Cramer.V lower.ci upper.ci
1   0.1781    0.127    0.313

How to perform ANCOVA in R » Quick Guide

Subscribe to our newsletter!

[newsletter_form type=”minimal”]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

1 × four =

Ads Blocker Image Powered by Code Help Pro

Quality articles need supporters. Will you be one?

You currently have an Ad Blocker on.

Please support FINNSTATS.COM by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO