How to Use “not in” operator in Filter

How to Use “not in” operator in Filter, To filter for rows in a data frame that is not in a list of values, use the following basic syntax in dplyr.

How to compare variances in R – Data Science Tutorials

df %>%
  filter(!col_name %in% c('value1', 'value2', 'value3', ...))

The examples below demonstrate how to utilize this syntax in practice.

Example 1: Rows that do not have a value in one column are filtered out.

Let’s say we have the following R data frame.

Two Sample Proportions test in R-Complete Guide – Data Science Tutorials

Let’s create a data frame

df <- data.frame(team=c('P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8'),
                 points=c(110, 120, 80, 16, 105, 185, 112, 112),
                 assists=c(133, 128, 131, 139, 134,55,66,135),
                 rebounds=c(18, 18, 14, 13, 12, 15, 17, 12))

Now we can view the data frame

df
    team points assists rebounds
1   P1    110     133       18
2   P2    120     128       18
3   P3     80     131       14
4   P4     16     139       13
5   P5    105     134       12
6   P6    185      55       15
7   P7    112      66       17
8   P8    112     135       12

The following syntax demonstrates how to search for rows where the team name is not ‘P1’ or ‘P2’.

Get the first value in each group in R? – Data Science Tutorials

Find rows where the team name isn’t ‘P1’ or ‘P2’.

df %>%
  filter(!team %in% c('P1', 'P2'))
   team points assists rebounds
1   P3     80     131       14
2   P4     16     139       13
3   P5    105     134       12
4   P6    185      55       15
5   P7    112      66       17
6   P8    112     135       12

Example 2: Filter for rows that don’t have a value in more than one column

The following syntax demonstrates how to filter for rows with a team name that does not equal ‘P1’ and a position that does not equal ‘P3’.

Change ggplot2 Theme Color in R- Data Science Tutorials

filter for rows with a team name other than ‘P1’ and a position other than ‘P3’.

df <- data.frame(team=c('P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8'),
                 points=c('A', 'A', 'B', 'B', 'C', 'C', 'C', 'D'),
                 assists=c(133, 128, 131, 139, 134,55,66,135),
                 rebounds=c(18, 18, 14, 13, 12, 15, 17, 12))
df
   team points assists rebounds
1   P1      A     133       18
2   P2      A     128       18
3   P3      B     131       14
4   P4      B     139       13
5   P5      C     134       12
6   P6      C      55       15
7   P7      C      66       17
8   P8      D     135       12
df %>%
  filter(!team %in% c('P1') & !points %in% c('D'))
   team points assists rebounds
1   P2      A     128       18
2   P3      B     131       14
3   P4      B     139       13
4   P5      C     134       12
5   P6      C      55       15
6   P7      C      66       17

You may also like...

No Responses

  1. Another solution is to write a ‘not in’ operator, negating the %in% operator and then use it as you would use %in%

    `%!in%` <- Negate(`%in%`)

Leave a Reply

Your email address will not be published. Required fields are marked *

three × two =

Ads Blocker Image Powered by Code Help Pro

Quality articles need supporters. Will you be one?

You currently have an Ad Blocker on.

Please support FINNSTATS.COM by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO