How to calculate Power Regression in R (Step-by-Step Guide)

Power Regression in R, Power regression is a non-linear regression technique that looks like this:

y = ax^b

where:

y: The response variable

x: The predictor variable

a, b: The coefficients of regression used to describe the relationship between x and y.

When the response variable is equal to the predictor variable raised to a power, this sort of regression is utilized to represent the scenario.

Power Regression in R

In R, the following example explains how to run power regression for a given dataset step by step.

Step 1: Collect data

Let’s start by making some fictitious data for two variables: x and y.

x<-1:10
y<-c(10, 28, 15, 17, 65, 120, 115, 119, 123,100)

Step 2: Create a visual representation of the data

Then, to visualise the relationship between x and y, let’s make a scatterplot:

plot(x, y)

We can observe from the graph that the two variables have a strong power relationship. As a result, fitting a power regression equation to the data rather than a linear regression model appears to be a decent option.

Step 3: Fit the Power Regression Model

Next, we’ll use the lm() function to fit a regression model to the data, indicating that R should fit the model using the logs of the response and predictor variables:

model <- lm(log(y)~ log(x))

Now we view the output of the model

summary(model)
Call:
lm(formula = log(y) ~ log(x))
Residuals:
    Min      1Q  Median      3Q     Max
-0.9251 -0.1743  0.1661  0.2879  0.5404
Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   2.0869     0.3858   5.410 0.000639 ***
log(x)        1.2056     0.2320   5.197 0.000826 ***
--
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.5102 on 8 degrees of freedom
Multiple R-squared:  0.7715,       Adjusted R-squared:  0.7429
F-statistic:    27 on 1 and 8 DF,  p-value: 0.0008258

The overall F-value of the model is 27 and the corresponding p-value is extremely small (0.0008258), which indicates that the model as a whole is useful.

We can see that the fitted power regression equation is: Using the coefficients from the output table, we can see that the fitted power regression equation is:

ln(y) = 2.0869 + 1.2056*log(x)

Based on the value of the predictor variable, x, we can use this equation to predict the responder variable, y.

For example, if x = 5, then we would predict that y value.

ln(y) = 2.0869+1.2056log(5) = 9.669329

Subscribe to our newsletter!

[newsletter_form type=”minimal”]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

9 + eight =

Ads Blocker Image Powered by Code Help Pro

Quality articles need supporters. Will you be one?

You currently have an Ad Blocker on.

Please support FINNSTATS.COM by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock
Available for Amazon Prime