How to Use Mutate function in R

How to Use Mutate function in R, This article demonstrates how to add additional variables to a data frame using R’s mutate() function.

Artificial Intelligence Examples-Quick View – Data Science Tutorials

How to Use Mutate function in R

The dplyr library has the following functions that can be used to add additional variables to a data frame.

mutate() – adds new variables while retaining old variables to a data frame.

transmute() – adds new variables and removes old ones from a data frame.

mutate_all() –  changes every variable in a data frame simultaneously.

mutate_at() –  changes certain variables by name.

mutate_if() – alterations all variables that satisfy a specific criterion

Tips for Rearranging Columns in R – Data Science Tutorials

mutate()

A data frame’s existing variables are preserved when new variables are added using the mutate() function. The mutate() basic syntax is as follows.

data <- mutate(new_variable = existing_variable/3)

data: the fresh data frame where the fresh variables will be placed

new_variable: the name of the new variable

existing_variable: the current data frame variable that you want to modify in order to generate a new variable

As an illustration, the code that follows shows how to modify the built-in iris dataset to include a new variable called root sepal width.

glm function in r-Generalized Linear Models – Data Science Tutorials

The first six lines of the iris dataset should be defined as a data frame.

data <- head(iris)
data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
library(dplyr)

Set the new column’s root sepal width to the sepal’s square root. variable width

How to perform the MANOVA test in R? – Data Science Tutorials

data %>% mutate(root_sepal_width = sqrt(Sepal.Width))
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species root_sepal_width
1          5.1         3.5          1.4         0.2  setosa         1.870829
2          4.9         3.0          1.4         0.2  setosa         1.732051
3          4.7         3.2          1.3         0.2  setosa         1.788854
4          4.6         3.1          1.5         0.2  setosa         1.760682
5          5.0         3.6          1.4         0.2  setosa         1.897367
6          5.4         3.9          1.7         0.4  setosa         1.974842

transmute()

A data frame’s variables are added and removed via the transmute() method. The code that follows demonstrates how to eliminate all of the existing variables and add two new variables to a dataset.

Checking Missing Values in R – Data Science Tutorials

The first six lines of the iris dataset should be defined as a data frame.

data <- head(iris)
data
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Create two new variables, then get rid of all the others.

Calculate the p-Value from Z-Score in R – Data Science Tutorials

data %>% transmute(root_sepal_width = sqrt(Sepal.Width),
                   root_petal_width = sqrt(Petal.Width))
   root_sepal_width root_petal_width
1         1.870829        0.4472136
2         1.732051        0.4472136
3         1.788854        0.4472136
4         1.760682        0.4472136
5         1.897367        0.4472136
6         1.974842        0.6324555

mutate_all()

The mutate_all() function changes every variable in a data frame at once, enabling you to use the funs() function to apply a certain function to every variable.

The use of mutate_all() to divide each column in a data frame by ten is demonstrated in the code below.

Augmented Dickey-Fuller Test in R – Data Science Tutorials

The first six rows of iris sans the Species variable as the new data frame.

data2 <- head(iris) %>% select(-Species)
data2

divide 10 from each of the data frame’s variables.

data2 %>% mutate_all(funs(./10))
Sepal.Length Sepal.Width Petal.Length Petal.Width
1         0.51        0.35         0.14        0.02
2         0.49        0.30         0.14        0.02
3         0.47        0.32         0.13        0.02
4         0.46        0.31         0.15        0.02
5         0.50        0.36         0.14        0.02
6         0.54        0.39         0.17        0.04

Remember that you can add more variables to the data frame by supplying a new name to be prefixed to the existing variable name.

How to Calculate Relative Frequencies in R? – Data Science Tutorials

data2 %>% mutate_all(funs(mod = ./10))
   Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length_mod
1          5.1         3.5          1.4         0.2             0.51
2          4.9         3.0          1.4         0.2             0.49
3          4.7         3.2          1.3         0.2             0.47
4          4.6         3.1          1.5         0.2             0.46
5          5.0         3.6          1.4         0.2             0.50
6          5.4         3.9          1.7         0.4             0.54
  Sepal.Width_mod Petal.Length_mod Petal.Width_mod
1            0.35             0.14            0.02
2            0.30             0.14            0.02
3            0.32             0.13            0.02
4            0.31             0.15            0.02
5            0.36             0.14            0.02
6            0.39             0.17            0.04

mutate_at()

Using names, the mutate at() function changes particular variables. The use of mutate_at() to divide two particular variables by 10 is demonstrated in the code below:

data2 %>% mutate_at(c("Sepal.Length", "Sepal.Width"), funs(mod = ./10))
Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length_mod
1          5.1         3.5          1.4         0.2             0.51
2          4.9         3.0          1.4         0.2             0.49
3          4.7         3.2          1.3         0.2             0.47
4          4.6         3.1          1.5         0.2             0.46
5          5.0         3.6          1.4         0.2             0.50
6          5.4         3.9          1.7         0.4             0.54
  Sepal.Width_mod
1            0.35
2            0.30
3            0.32
4            0.31
5            0.36
6            0.39

mutate_if()

All variables that match a specific condition are modified by the mutate_if() function.

The mutate_if() function can be used to change any variables of type factor to type character, as shown in the code below.

How to make a rounded corner bar plot in R? – Data Science Tutorials

data <- head(iris)
sapply(data, class)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species
   "numeric"    "numeric"    "numeric"    "numeric"     "factor"

every factor variable can be converted to a character variable.

new_data <- data %>% mutate_if(is.factor, as.character)
sapply(new_data, class)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species
   "numeric"    "numeric"    "numeric"    "numeric"  "character"

The mutate_if() method can be used to round any numeric variables to the nearest whole number using the following example code.

Calculate the P-Value from Chi-Square Statistic in R.Data Science Tutorials

In the first six rows of the iris dataset,

data <- head(iris)
data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

any numeric variables should be rounded to the nearest decimal place.

data %>% mutate_if(is.numeric, round, digits = 0)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1            5           4            1           0  setosa
2            5           3            1           0  setosa
3            5           3            1           0  setosa
4            5           3            2           0  setosa
5            5           4            1           0  setosa
6            5           4            2           0  setosa

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

4 × 3 =

Ads Blocker Image Powered by Code Help Pro

Quality articles need supporters. Will you be one?

You currently have an Ad Blocker on.

Please support FINNSTATS.COM by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock