Replace NA with Zero in R

Replace NA with Zero in R, Using the dplyr package in R, you can use the following syntax to replace all NA values with zero in a data frame.

Substitute zero for any NA values.

Create new variables from existing variables in R – Data Science Tutorials

df <- df %>% replace(is.na(.), 0)

To replace NA values in a particular column of a data frame, use the following syntax:

In column col1, replace NA values with zero.

df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1))

Additionally, you can substitute a NA value in one of a data frame’s several columns using the following syntax.

Test for Normal Distribution in R-Quick Guide – Data Science Tutorials

in columns col1 and col2, replace NA values with zero

df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1),
                    col2 = ifelse(is.na(col2), 0, col2))

With the help of the following data frame, the following examples demonstrate how to utilize these functions in practice.

Let’s create a data frame

df <- data.frame(team = c('T1', 'T1', 'T1', 'T2', 'T2', 'T2', 'T2'),
                 position = c('R1', NA, 'R1', 'R1', 'R1', 'R1', 'R2'),
                 points = c(122, 135, 129, NA, 334, 434, 139))

Now we can view the data frame

How to Filter Rows In R? – Data Science Tutorials

df
  team position points
1   T1       R1    122
2   T1     <NA>    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Example 1: Replace every NA value across all columns.

Replace all NA values across all columns of a data frame by running the code below.

library(dplyr)

Yes, now we will replace all NA values with zero

df <- df %>% replace(is.na(.), 0)

Let’s view the data frame

df
  team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Example 2: In a Specific Column, Replace NA Values

The code below demonstrates how to change NA values in a particular column of a data frame.

One sample proportion test in R-Complete Guide (datasciencetut.com)

library(dplyr)

replace NA values with zero in position column only

df %>% mutate(position = ifelse(is.na(position), 0, position))
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Example 3: Replace any columns with NA values.

The code that follows demonstrates how to change NA values in one of a data frame’s many columns.

library(dplyr)

Now we can replace NA values with zero in position and points columns

What Is the Best Way to Filter by Date in R? – Data Science Tutorials

df %>% mutate(position = ifelse(is.na(position), 0, position),
                    points = ifelse(is.na(points), 0, points))
   team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Using the dplyr package in R, you can use the following syntax to replace all NA values with zero in a data frame.

Substitute zero for any NA values.

df <- df %>% replace(is.na(.), 0)

To replace NA values in a particular column of a data frame, use the following syntax:

In column col1, replace NA values with zero.

df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1))

Additionally, you can substitute a NA value in one of a data frame’s several columns using the following syntax.

How to make a rounded corner bar plot in R? – Data Science Tutorials

in columns col1 and col2, replace NA values with zero

df <- df %>% mutate(col1 = ifelse(is.na(col1), 0, col1),
                    col2 = ifelse(is.na(col2), 0, col2))

With the help of the following data frame, the following examples demonstrate how to utilize these functions in practice:

Let’s create a data frame

df <- data.frame(team = c('T1', 'T1', 'T1', 'T2', 'T2', 'T2', 'T2'),
                 position = c('R1', NA, 'R1', 'R1', 'R1', 'R1', 'R2'),
                 points = c(122, 135, 129, NA, 334, 434, 139))

Now we can view the data frame

df
  team position points
1   T1       R1    122
2   T1     <NA>    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Example 1: Replace every NA value across all columns.

Replace all NA values across all columns of a data frame by running the code below.

Best Data Science YouTube Tutorials Free to Learn – Data Science Tutorials

library(dplyr)

Yes, now we will replace all NA values with zero

df <- df %>% replace(is.na(.), 0)

Let’s view the data frame

df
  team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Example 2: In a Specific Column, Replace NA Values

The code below demonstrates how to change NA values in a particular column of a data frame:

library(dplyr)

replace NA values with zero in position column only

df %>% mutate(position = ifelse(is.na(position), 0, position))
team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1     NA
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

Example 3: Replace any columns with NA values.

The code that follows demonstrates how to change NA values in one of a data frame’s many columns.

library(dplyr)

Now we can replace NA values with zero in position and points columns

df %>% mutate(position = ifelse(is.na(position), 0, position),
                    points = ifelse(is.na(points), 0, points))
   team position points
1   T1       R1    122
2   T1        0    135
3   T1       R1    129
4   T2       R1      0
5   T2       R1    334
6   T2       R1    434
7   T2       R2    139

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

four × 5 =